Taming the Danube: Floodplain Regulation in the Machland

Severin Hohensinner

Summary

Regulation efforts in the Machland, an alluvial floodplain of the Austrian Danube, started as early as 1826. The history of the Danube regulation in the Austrian Machland, during the 19th century shows the enormous efforts made to transform a dynamic river landscape into a navigable waterway and a stable floodplain that supports the various human demands.

Prior to regulation the Danube was a highly dynamic river. Floods occurred regularly as part of the river’s normal behaviour. With every flood the water changed its course, winter ice floods were particularly abrasive. The river froze regularly, and in one notably cold winter, 1876, the Danube was frozen from Tulln to Budapest (380 km) throughout all of February. Ship transport suffered from the frequent changes of the river bed.
Regulation efforts in the Machland, an alluvial floodplain of the Austrian Danube, started as early as 1826. These efforts were triggered by the danger that the meandering river—with its maze of shallow channels, islands and gravel bars—presented to ships. The main channel moved continuously to the south, so this channel was blocked and a diversion dam was built to direct all water to the northern fork. While the plan worked, the increased flow of water threatened to erode the northern bank. In response, an artificial channel was dug right through Weidenhaufen Island in 1832. As planned, the river widened its new channel. This resulted in a straightened shipping route. However, as an unintended consequence, the freshly eroded sediment was deposited right after the outlet of the channel, making navigation in the so-called Holler more difficult than before.

The only solution to the problem was to stabilize the banks over several kilometres with training works. Eventually, after 35 years of planning and building dykes, groynes and training works, the regulation was “complete”—the river was tamed.
Danube in Machland (1829)

The Machland prior to the excavation of the shipping channel through the Weidenhaufen Island in 1829.

All rights reserved © 2008 Severin Hohensinner

Grant sponsor: FWF-project no. P14959-B06

The copyright holder reserves, or holds for their own use, all the rights provided by copyright law, such as distribution, performance, and creation of derivative works.
The regulation of the Danube cost 220,000 Gulden per kilometre in the nineteenth century. Taming the waters came at a considerable price, about twice as much as building the same length of railway track.
Regulation works in a small area of the Danube

Regulation works in a small area given with dates on a map of the river landscape of 2010.

All rights reserved © 2010 Severin Hohensinner

The copyright holder reserves, or holds for their own use, all the rights provided by copyright law, such as distribution, performance, and creation of derivative works.

Arcadia Collection:
Water Histories

Further readings:

Print date: 22 August 2021 17:19:14
Related links:

- Flood at the Danube River in the Machland 1812 (animation)
 http://www.youtube.com/watch
- Danube River in the Machland 1715 – 1991 (27 color maps)
 https://www.youtube.com/watch
- DEHI – Danube Environmental History Initiative
 http://www.umweltgeschichte.uni-klu.ac.at/index,3184,DEHI.html

How to cite:

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

2011 Severin Hohensinner
This refers only to the text and does not include any image rights.
Please click on the images to view their individual rights status.

ISSN 2199-3408
Environment & Society Portal, Arcadia

About the author:

Severin Hohensinner
Severin Hohensinner, PhD in landscape ecology/planning, has been a research assistant since 2001, with a focus on the reconstruction and modelling of historical river/floodplain hydromorphology and morphodynamic processes. His specific scientific interest is on the historical development of the Danube River in the context of applied river restoration projects. The results of his studies contribute to the identification of historical living conditions of the biocoenoses in riverine ecosystems.